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Abstract
This paper presents a transfer learning method in speech
emotion recognition based on a Time-Delay Neural Network
(TDNN) architecture. A major challenge in the current speech-
based emotion detection research is data scarcity. The pro-
posed method resolves this problem by applying transfer learn-
ing techniques in order to leverage data from the automatic
speech recognition (ASR) task for which ample data is avail-
able. Our experiments also show the advantage of speaker-class
adaptation modeling techniques by adopting identity-vector (i-
vector) based features in addition to standard Mel-Frequency
Cepstral Coefficient (MFCC) features.[1] We show the trans-
fer learning models significantly outperform the other methods
without pretraining on ASR. The experiments performed on the
publicly available IEMOCAP dataset which provides 12 hours
of emotional speech data. The transfer learning was initialized
by using the Ted-Lium v.2 speech dataset providing 207 hours
of audio with the corresponding transcripts. We achieve the
highest significantly higher accuracy when compared to state-
of-the-art, using five-fold cross validation. Using only speech,
we obtain an accuracy 71.7% for anger, excitement, sadness,
and neutrality emotion content.
Index Terms: transfer learning, emotion recognition, IEMO-
CAP, time-delay neural network

1. Introduction
Detecting emotions from speech has attracted attention for its
usage in enhancing natural human-computer interaction. The
ability of understanding human emotion status is helpful for ma-
chines to bring empathy in various applications.

Speech emotion recognition is suffering from insufficiency
of labeled data. Though several emotion datasets have been re-
leased [2][3][4], the size of emotion datasets are relatively small
due to the expensive collection costs compared with plentiful
data for tasks like Automatic Speech Recognition(ASR)[5] and
speaker recognition[6]. Most speech emotion detection mod-
els are trained from scratch within a single dataset[7][8][9][10],
therefore cannot successfully adapt to novel scenarios which
has not been encountered during training. One possible solu-
tion is to leverage knowledge acquired from large-scale datasets
of relevant speech tasks to emotion recognition domain. Al-
though some efforts were spent on transfer learning method for
categorical emotion detection from other paralinguistic tasks,
such as speaker, and gender recognition and effective emo-
tional attributes prediction[11][12], however they don’t choose

source domain with large-scale datasets, not shown significant
improvement over non-transfer learning methods.

Previous research has shown that speech emotion de-
tection can be improved after combined with textual data
[13]. Multi-modal methods can significantly improve the emo-
tion detection performance by incorporating lexical features
from given transcripts with the acoustic features from audios
[14][15][16].However, in real application scenario, transcripts
are often absent. Although ASR can provide transcripts in real
time to emotional speech data[16], it requires large language
models loaded, and is computational costly when decoding se-
quence. Therefore, transfer learning using ASR as the source
domain might be an efficient solution in emotion detection to in-
corporate textual features through high level features extracted
in ASR models.

Another challenge for emotion recognition is that speak-
ers express emotions in different ways, in addition, environ-
ments can affect acoustic features. Speaker adaptation is useful
to capsulate speaker and environment specific information into
acoustic features. iVector[17] based adaptation has been shown
fast and efficient in speech recognition[18]. We employ i-vector
based speaker adaptation in emotion detection.

This paper proposes a transfer learning method to adapt
ASR models in emotion recognition domain. The model is
pre-trained on Tedlium2 dataset[5], with over 207 hours data,
and fine tuned on 12 hours of emotional speech. The model
architecture is TDNN-based[19][1][18] with input as speaker
adapted MFCC[1] features. Our experiments show the improve-
ments in emotion detection using transfer learning from ASR to
speech emotion recognition combined with speaker adaptation.
The performance is evaluated on the benchmark dataset Inter-
active Emotional Dyadic Motion Capture (IEMOCAP)[2], with
71.7% unweighted accuracy among “angry”, “happy”, “sad”
and “neutral” under the 5-fold cross validation strategy. Our
method significantly outperforms the state-of-art strategy[9].

2. Related Work
Most efficient models in prior work are based on deep learn-
ing models, which can learn high-level features from low-level
acoustic features. Lee’s work[7] showed the importance of
long-range context effect, and significantly improve the RNN
results over DNN model. This work had been staying state-of-
art for years with 63.89% unweighted accuracy(UA), until sur-
passed by a hybrid approach of convolution layers and LSTM
convolutional LSTM[9] with 68.8% accuracy. Previous litera-



ture has seldomly discussed about TDNN architecture in emo-
tion recognition. TDNN can efficiency capture temporal infor-
mation as RNN and LSTM do, but is faster for its parallelization
ability and lower computation costs during training[18], which
is a desired property when training on large-scale ASR data.

Many approaches[7] [10]are speaker independent where
features are normalized for individuals resulting in information
loss, while our work is conducted in speaker dependent context
using full MFCC raw features combined with iVectors contain-
ing speaker characteristics[17]. Peddinti[18] has proposed an
efficient TDNN-based architecture for ASR with features as the
combination of MFCC and iVectors, efficiently learned robust
representations among various speakers and environments. Our
study uses bottleneck layers of this TDNN architecture to use
high-level feature representations that reflect insights from ASR
tasks, and fine tunes on emotion datasets.

3. Method
3.1. Problem Definition

The emotion recognition problem is a classification problem
when we represent emotion as categories rather than dimen-
sional representations,

D = {(X, z)} (1)

where where X are the acoustic features input and z is dimen-
sional output corresponding to the emotion prediction. We want
to find a function

D = {f : X → z} (2)

to map features to categories. This model is trained on frame-
level labels, and predicts the utterance labels by aggregating
frame-level predictions through max likelihood by summing up
the results of frames.

3.2. Feature

Full MFCC features with all 40 coefficients are computed at
each time index is used as input to neural network. Instead
of mean normalization on MFCC, an 100-dimension iVector
is appended to MFCC features at each frame to encode mean-
offset information. The iVector extraction model is trained as
described in [18].

3.3. TDNN for ASR

TDNN is designed for capturing long term temporal dependen-
cies in lower computational costs compared to RNN. It operates
similar to a feed forward DNN architecture where lower layers
focus input content in narrow windows, and higher layers con-
nects windows of selected previous layer nodes to process the
information from a wider context. Therefore its deeper layers
can learn effective long term temporal dependencies without re-
current connections which hurdle parallel computation.

The pretraining on ASR follows the Kaldi recipe for the
TED-Lium tasksi[20], where uses 13 TDNN layers and each
layer consists of 1024 activation nodes. The time stride of each
layer, which defines the window at which calculating over nodes
at neighbor time steps in the past layer, is assigned as 0 for the
1st and 5th TDNN layer, as 1 from the 2nd and 4th layer, and as
3 for layers after since the 6th. A fully connected prefinal layer
of 1024 dimension follows the 13th TDNN layer before decod-
ing output sequences. The model is trained with a sequence-

level objective function named lattice-free version of the max-
imum mutual information (LF-MMI)[21], for maximising the
log-likelihood of the correct sequences.

3.4. Training on Emotion Labels

Emotion labels are given for each utterance in the dataset. We
label all the frames using the utterance label where the frames
lie in. To train for emotion detection, the 12th and 13th TDNN
layers as well as the ASR prefinal layer are selected to produce
bottleneck embeddings as high level features learnt from ASR,
a new fully connected dense layer is appended after the embed-
ding layer for predicting the frame-level emotion labels, and a
softmax layer with four dimension outputs is used to predict
frame-level emotion. The model uses cross-entropy as the ob-
jective function for frame-level classification.

The output of this model is for frame unit rather than for ut-
terance unit, we aggregate frame-level predictions, using maxi-
mum likelihood by adding the output vectors over frames, cor-
responding to the highest valued dimension of the sum of the
softmax layer output over all frames within the utterance

4. Experiment
4.1. Dataset

This work uses IEMOCAP, which contains 12 hours of audio
data with scripted and improvised speech, performed by ten ac-
tors, one male and one female as a pair in five sessions. In train-
ing and testing, four categories “angry”, “happy”, “sad” and
“neutral” are selected out of ten categories, for a more balanced
and efficient dataset, resulting in a final collection of 4936 ut-
terances, each utterance has unique emotion label. This dataset
consists of five sessions, and the category distribution is as in
Table 1.

Table 1: Emotion category distribution in IEMOCAP

session ang exc neu sad total

ses1 229 143 384 194 950
ses2 137 210 362 197 906
ses3 240 151 320 305 1016
ses4 327 238 258 143 966
ses5 170 299 384 245 1098
total 1103 1041 1708 1084 4936

4.2. Pretraining on ASR

For pretraining on ASR, we use the feed-forward TDNN to cap-
ture long term temporal dependencies from short term feature
representations. Hidden activations are sub-sampled in order to
speed up the training[18]. The model is pre-trained on ASR
data, with 13 TDNN layers and output layers for decoding se-
quence based on acoustic models. As neighboring activations
shares largely overlapped input contexts, sub-sampling on acti-
vations can reduce computational costs without sacrificing the
coverage range over input frames. The hyper parameters for
model architecture and training are chosen according to Kaldi
Tedlium2 TDNN recipe[20], which has been tuned properly on
Tedlium2 dataset, achieving 7.6 word error rate(WER) on test
dataset after six epochs training. The parameters are optimized
through preconditioned stochastic gradient descent (SGD) up-
dates, following the training recipe detailed in [22].



4.3. Training for Emotion Classification

After obtaining the pretraining model, we use 12th, 13th and the
prefinal layer as the bottleneck features for the appended fully
connected layer and the softmax layer for predicting frame emo-
tions. We test on session 5 after training on session 1-4, and find
the 12th TDNN layer the best performance, therefore we use the
12thlayer output as the bottleneck embeddings for later experi-
ments.

4.4. Evaluation Method

For parallel comparison with other methods[7][9][10], we train
under a 5-fold cross validation strategy where each time we
choose a session from IEMOCAP for testing, and the other four
for training. The results are evaluated by the average of un-
weighted accuracy over five cross validation experiment runs.

5. Results
5.1. Bottleneck Layer Selection

Compare the prefinal, 12th and 13th layer as in Table 2, we found
that the 12th layer has the best performance and prefinal have
the worst. We hypothesis that is because in ASR, prefinal and
13th layer are more specialized in speech recognition as they are
closer to the final output layer, while the 12th learns the general
high-level acoustic features that helps emotion recognition.

Table 2: Test Accuracy on Session 5 with different bottleneck
layers

Bottleneck Layer Test Accuracy on Ses 5 (%)

Prefinal 63.4
13th TDNN 69.3
12th TDNN 66.7

5.2. Model performance

Our model using the 12th TDNN layer outperforms other cur-
rent state-of-art methods. Table 3 to our best knowledge. The
5-fold cross validation unweighted accuracy is improved from
68.8%[9] to 71.7%.

Table 3: Model Comparison on Unweighted Accuracy(UA) in
% from Five-fold Cross Validation

Model Single Session UA 5-fold CV UA

ASR Transfer Learning ses1 65.3
ses2 78.9
ses3 71.1
ses4 73.9
ses5 69.3

71.7
RNN-ELM[7] 63.9

Conv-LSTM[9] 68.8
CTC-BLSTM[10] 54

5.3. Error analysis

To study the model performance within each emotion category,
we present a confusion matrix, shown in Figure 1, by calculat-

Figure 1: Confusion Matrix for Transfer Learning Method Pre-
dictions

ing the average confusion matrix of five cross validation exper-
iments for our best model architecture, using TDNN 12th layer
as the bottleneck layer. The excitement category has a lower ac-
curacy compared to other categories, in which 28% samples are
confused with neutral utterances. We observed that the netral
emotion is the most likely wrong prediction from all non-neutral
categories. It might due to the fact that non-neutral utterances
usually consist of a large proportion of frames carrying no emo-
tional content. We also found the model confuses neutrality as
sadness, that may because many neutral utterances are in low
tone, as in sadness.

6. Conclusion
Our study shows transfer learning from ASR is a good strat-
egy for emotion classification, and indicates potential feature
overlap between speech-to-text and emotion recognition. Our
method is limited in frame-level prediction, where frames are
predicted first then aggregated into utterance level labels. The
frame-level structure results in the ignorance of sequential in-
formation in emotion labels decoding. In future, we expect se-
quence models can predict at utterance-level and bring further
performance improvements by considering sequential informa-
tion for sequence decoding.
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